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Abstract

Singlet-states jSi ¼ ðjabi � jbaiÞ=
ffiffiffi
2
p

can be excited in pairs of coupled spins I and S, first by preparing either a non-vanishing zero-
quantum coherence I+S� or a state of longitudinal two-spin order IzSz and then by applying a coherent radio-frequency (RF) irradiation
with a carrier frequency xrf = (XI + XS)/2 that lies half-way between the chemical shifts of the two spins involved. The life-times TS can
be much longer than the spin-lattice relaxation time T1 of longitudinal magnetization, but singlet-states are ultimately relaxed, not only
by dipolar interactions between the active spins or with the external spins, but also as a result of a non-vanishing offset
Dx = xrf � (XI + XS)/2 or an insufficient amplitude of the RF irradiation that fails to fulfill the condition x1� DX = (XI � XS). In this
work, the effect of off-resonance irradiation is explored and an approximate formula for the effective relaxation rate of the singlet pop-
ulation is provided on the basis of perturbation theory. The qualitative features of the dependence of the relaxation rate of the singlet
population on the offset Dx and on the difference DX of the chemical shifts of the two spins are illustrated by comparison with numerical
simulations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It has been shown by Levitt and co-workers [1–3] that
singlet-states can be prepared in homonuclear two-spins
systems so as to have lifetimes TS that can be much longer
than the longitudinal relaxation time T1 of the spins
involved. Many experiments that rely on the ‘‘memory’’
of the populations of eigen-states of spin systems, such as
methods that have been designed to measure slow diffusion
[4] or slow chemical exchange [5], were hitherto believed to
be limited by the longitudinal relaxation time T1. Such
experiments can now be extended to much longer time-
scales in as far as suitable singlet-states with TS > T1 can
be excited. The lifetimes TS of singlet-states can be very
long provided their populations are isolated from other
1090-7807/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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states, i.e., provided both coherent and stochastic Hamilto-
nians that give rise to relaxation are symmetric with respect
to a permutation of the two spins. The dipolar interaction
between the two spins involved necessarily possesses this
symmetry and will therefore leave the population of the
singlet-state unaffected. By contrast, the difference in the
chemical shift anisotropies (CSAs) as well as dipolar cou-
plings to external spins, do not possess this symmetry.
There are always bound to be some leakage terms due to
stochastically fluctuating Hamiltonians that are not under
the control of the experimenter. Another source of leakage
stems from the coherent parts of the Hamiltonian. These
can, at least in principle, be controlled by applying suitable
RF pulses. In the original experiments [2,4], a continuous-
wave RF irradiation with the carrier positioned exactly
half-way between the isotropic chemical shifts of the two
spins I and S, i.e., at xrf = (XI + XS)/2, allows one to effec-
tively suppress the shifts, thereby making the effective
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Hamiltonian symmetric with respect to permutation. As
with many other average Hamiltonian strategies, the stron-
ger the RF field (i.e., the better the inequality
x1� DX = (XI � XS) is fulfilled), the better is the suppres-
sion of the effects of the chemical shifts. The ratio DX/x1 of
the magnitude of the chemical shift difference and the RF
amplitude is an important parameter that affects the singlet
lifetime. The offset Dx = xrf � (XI + XS)/2 of the carrier
from the mean of the chemical shifts of the two spins is
another source of leakage of the population of the sin-
glet-state. The ratio |Dx|/x1 of this offset and the RF
amplitude is therefore another important parameter that
determines the singlet lifetime. In the following, a simple
theory is presented of the lifetime TS of the population of
a singlet-state in an isolated spin pair irradiated by a con-
tinuous RF field and relaxed only by the dipolar interac-
tion between the two active spins. The Liouvillian of this
system can be represented by a matrix of dimension
16 · 16. If one invokes a secular approximation with
respect to the RF Hamiltonian, this matrix is block-diago-
nal. The population of the singlet-state is therefore only
connected to a few other terms, thus allowing one to
describe the dynamics by an effective Liouvillian of reduced
dimensions which provides a qualitative understanding of
the dependence of the lifetime of the singlet-state on the
ratios |Dx|/x1 and DX/x1, i.e., on the offset Dx and on
the difference DX of the isotropic shifts. Numerical simula-
tions of relaxation in a two-spin system with a dipolar
interaction between the active spins supplements the
theory.

1.1. The Liouvillian

In the usual rotating frame, the Hamiltonian of a two-
spin system irradiated by a continuous RF field is given by

H¼x1ðI xþSxÞþDxðI zþSzÞþ2pJI �Sþ 1
2
DXðI z�SzÞ;

ð1Þ

where x1 is the RF amplitude, Dx = xrf � (XI + XS)/2 is
the offset of the carrier xrf from the center of the spectrum
(XI + XS)/2 and DX = XI � XS is the difference of the iso-
tropic shifts assumed to be positive without loss of general-
ity. While the first three terms in Eq. (1) are invariant with
respect to a permutation of the two spins, the last term is
anti-symmetric. As we shall see, this leads to leakage of
the population of the singlet-state to the triplet states.
When Dx/x1 = 0 and DX/x1� 1, the fourth term propor-
tional to the shift-difference DX is rendered ineffective since
it does not commute with the leading RF term proportion-
al to x1 that dominates the Hamiltonian. However, when
the offset |Dx|/x1 > 0, a part of the term proportional to
DX remains secular with respect to the dominant terms in
Eq. (1). This may be appreciated by rewriting the Hamilto-
nian of Eq. (1) in a basis where the symmetric part of the
Hamiltonian that is invariant to permutation appears
diagonal.
H ¼ xeffðI z þ SzÞ þ 2pJI � S þ DX½ðI z � SzÞ cos b

� ðI x � SxÞ sin b�; ð2Þ

where the effective frequency xeff and the angle b are given by

xeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ Dx2

q
;

tan b ¼x1=Dx: ð3Þ

If we treat the latter two anti-symmetric terms of the Ham-
iltonian in Eq. (2) as a perturbation, it is evident that the
third term, which is proportional to cosb, commutes with
the leading symmetric term, and is therefore secular in
the eigenbase of this symmetric term. The term ðI x � SxÞ
sin b is non-secular and will affect the dynamics very weak-
ly provided DX/xeff� 1. It will hence be neglected in what
follows. In passing, we note that the singlet population re-
tains its identity under the transformation from Eqs. (2) to
(3). while all other observables are affected by this transfor-
mation. The Hamiltonian of Eq. (2) can be represented in
the basis |T+1æ = |aaæ, |T0æ = n(|abæ + |baæ), |T�1æ = |bbæ,
and |Sæ = n(|abæ � |baæ), where n is a normalization con-
stant equal to 2�1/2.

H ¼xeffðjTþ1ihTþ1j � jT�1ihT�1jÞ þ pJðjT 0ihT 0j � jSihSjÞ
þ DX cos bðjT 0ihSj þ jSihT 0jÞ � pJET 0;S ; ð4Þ

where ET 0;S is the identity operator in the manifold spanned
by |T0æ and |Sæ, i.e., ET 0;S ¼ jT 0ihT 0j þ jSihSj. We observe
that the Hamiltonian in Eq. (4) is the sum of two sub-Ham-
iltonians pertaining to the sub-spaces spanned by the oper-
ators (|T+1æ, |T�1æ) and (|T0æ, |Sæ). As far as the coherent
part of the dynamics is concerned, the two sub-spaces are
independent of each other. The sub-space of interest is
the one containing the singlet population. The Hamiltoni-
an in this sub-space can be written using four fictitious
spin-half operators defined by,

ET 0;S ¼jT 0ihT 0j þ jSihSj

Lz ¼
1

2
ðjT 0ihT 0j � jSihSjÞ

Lx ¼
1

2
ðjT 0ihSj þ jSihT 0jÞ

Ly ¼
1

2i
ðjT 0ihSj � jSihT 0jÞ; ð5Þ

as follows:

HT ;S ¼ 2pJLz þ 2DX cos bLx: ð6Þ
The evolution of the density operator under the Hamiltoni-
an of Eq. (6) is governed by the following equation of mo-
tion for the three operators defined by Eq. (5).

d

dt

Lz

Ly

Lx

0
B@

1
CA ¼

0 2DX cos b 0

�2DX cos b 0 �2pJ

0 2pJ 0

0
B@

1
CA

Lz

Ly

Lx

0
B@

1
CA:
ð7Þ

The operator Lz in Eq. (7) corresponds to the difference be-
tween the populations of the |T0æ component of the triplet
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manifold and the singlet-state. This is none other than the
symmetric part of the zero-quantum coherence. Therefore,
in so far as the coherent part of the dynamics is concerned,
moving the carrier away from the center of the spectrum
(Dx „ 0) re-introduces the shift difference which is secular
with respect to the leading dominant term of the Hamilto-
nian proportional to xeff in Eq. (2).

1.2. Relaxation

The relaxation rates can be calculated in the framework
of Redfield theory [6,7]. The homonuclear dipolar interac-
tion IS between the two spins I and S that are actively
involved in the singlet-state is assumed to be the only
source of relaxation in this analysis. The stochastic Hamil-
tonian that leads to relaxation can be written as a scalar
product of the second rank spherical tensors corresponding
to the spatial and spin parts as follows [7]:

HISðtÞ ¼ xD

X
q

AqðtÞF �q; ð8Þ

where Aq(t) is the spatial part of the interaction that is ran-
domly time-dependent due to molecular reorientation, F�q

are the components of the rank-2 spherical tensor formed
by the product of the two spin operators and xD is the
strength of the dipolar interaction. In calculating, the relax-
ation terms in the Liouvillian, an additional assumption is
made in addition to the usual approximations of Redfield
theory. If sc is the correlation time of the random process
(usually due to rotational diffusion), and if x1 is the ampli-
tude of the RF field, we shall assume that x1sc� 1. In other
words, the random motion is assumed to obey the extreme
narrowing condition with respect to the RF field amplitude
x1, which is typically four to five orders of magnitude smaller
than the Larmor frequency x0 that is used to define the usual
extreme narrowing condition x0sc� 1. As a result of this
assumption, the relaxation terms in the Liouvillian appear
to be independent of the RF field amplitude x1, and are thus
identical to the case where x1 = 0 [8]. We may recall that
essentially the same assumption is made in writing the Bloch
equations in the presence of an RF field [8–11].

Owing to the scalar form of the stochastic Hamiltonian
of Eq. (8), the Redfield relaxation matrix is block diagonal
in the eigenbasis of the Zeeman super-Hamiltonian. The
observables of the (|Sæ, |T0æz) manifold are therefore only
connected to the populations of the |T+1æz and |T�1æz states.
The superscripts z on the kets indicate that these terms are
quantized along the z direction in contrast to the basis of
Eq. (4), which corresponds to the tilted frame of reference
introduced in Eq. (2), where the block diagonal nature of
the Redfield matrix would be lost. We make a second
approximation now by neglecting all terms in the relaxa-
tion matrix that are non-secular with respect to the effective
field in Eq. (2). This approximation is valid as long as
xeff � x2

Dsc which is readiliy fulfilled in practice. When
solving the Bloch equations in the presence of a continuous
RF field, this is referred to as the ‘‘condition of satura-
tion’’. This approximation allows us to neglect all terms
in the relaxation matrix that connect operators that nutate
at different rates, resulting in a block diagonal form for the
total Liouvillian matrix. The block containing the singlet
population is

d

dt

jSihSj
Ly

Lx

jT 0ihT 0j
jTþ1ihTþ1j
jT�1ihT�1j

0
BBBBBBBB@

1
CCCCCCCCA

¼

0 �DXcosb 0 0 0 0

DXcosb �R2 �2pJ �DXcosb 0 0

0 2pJ �R2 0 0 0

0 DXcosb 0 �R0;0 R0;þ1 R0;�1

0 0 0 R0;þ1 Rþ1;þ1 Rþ1;�1

0 0 0 R0;�1 Rþ1;�1 R�1;�1

0
BBBBBBBB@

1
CCCCCCCCA

�

jSihSj
Ly

Lx

jT 0ihT 0j
jTþ1ihTþ1j
jT�1ihT�1j

0
BBBBBBBB@

1
CCCCCCCCA
:

ð9Þ
It is clear that the singlet-state is isolated from all other spin
orders either if DX = 0 (where it would not be possible to ex-
cite any singlet-state) or if the RF carrier is positioned exactly
half-way between the two chemical shifts (Dx = 0, hence
cosb = 0). It should however be borne in mind that for the
present treatment to be valid, the RF needs to be strong en-
ough to satisfy DX/x1� 1 since, the non-secular term
DXðI x � SxÞ sin b in Eq. (3) could not be neglected other-
wise. It should also be emphasized that despite the secular
approximation involved in simplifying the Redfield relaxa-
tion matrix in the tilted frame, off-diagonal terms may occur
in the relaxation matrix that connect the coherences Lx and
Ly to the populationsLz in Eq. (9) since, all of these operators
commute with the dominant part of the Hamiltonian,
xeffðI z þ SzÞ of Eq. (2). The symmetry of the dipolar interac-
tion under a permutation of the two spins however ensures
that off-diagonal terms connecting operators of different
symmetry must vanish. The form of the Liouvillian matrix
in Eq. (9) is hence rigorously correct. The frequencies and
the relaxation rates can be obtained by diagonalization.

In the presence of an offset, the evolution of the singlet
population must be described by an oscillating function with
a multi-exponential envelope since it is no longer an eigen-
mode of the Liouvillian. An estimate of the lifetime TS of
the longest-lived eigenvector of the Liouvillian matrix of
Eq. (9) can be obtained by examining the smallest eigenvalue.
Treating DXcosb as a perturbation, the second-order correc-
tion to the relevant eigenvalue of the Liouvillian is
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K1 ¼ � 1

4
DX2 cos2 b

1

R2 þ 2piJ
þ 1

R2 � 2piJ

� �
: ð10Þ

This correction is purely real and results in a corrected
relaxation rate of the singlet population given by,

RS �
1

2
DX2 cos2 b

R2

R2
2 þ 4p2J 2

� �

¼ 1

2
DX2 Dx2

Dx2 þ x2
1

� �
R2

R2
2 þ 4p2J 2

� �
; ð11Þ

where the angle b has been defined in Eq. (3). Eq. (11) pre-
dicts that, for a given RF amplitude x1, the relaxation rate
of the singlet-state population depends on the difference of
the chemical shifts DX = XI � XS in a quadratic fashion
characteristic of second-order perturbation theory. When
the RF carrier is positioned in the center of the spectrum
(Dx = 0), the singlet population is completely isolated. On
the other hand, when |Dx|/x1� 1, the rate RS attains a lim-
iting value,

RS ¼
1

2
DX2 R2

R2
2 þ 4p2J 2

� �
: ð12Þ

Eq. (11) can be re-written in terms of reduced quantities,
P = DX/(2pJ) and Q = Dx/x1

RS �
1

2
P 2 Q2

1þ Q2

� �
R2

1þ R2

2pJ

� �2

 !
: ð13Þ
0.4 0.3 0.2 0.1 0 0.1 0.2 0.3

10
5

0
5

10
0

Δω/ω 1

ΔΩ/2π J
2. Simulations

The evolution of the singlet-state population in the pres-
ence of a continuous RF field and dipolar relaxation were
simulated numerically, assuming (x1sc� 1). Fig. 1 shows
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Fig. 1. Simulations of the time-dependence of the singlet population with
DX/2p = 75 Hz, x1/2p = 1100 Hz, J/2p = 12 Hz at Dx/2p = 0 Hz (solid
line), 50 Hz (dashed curve), and 100 Hz (dotted curve). Relaxation was
introduced with the parameters, xD/2p = 30 kHz, sc = 0.1 ns, and x0/
2p = 400 MHz.
the evolution of the singlet population PS = Tr(r(t)|SæÆS|)
as a function of the offset Dx, starting from an initial den-
sity operator comprising only a non-vanishing population
of the singlet state, |SæÆS|. The parameters used in the sim-
ulations (given in the figure caption) are typical of systems
of pairs of protons.

The population PS of the singlet-state is seen to have
shorter lifetimes with increasing offsets. The decay of the
singlet-state on resonance for Dx = 0 (solid curve of
Fig. 1) is due to the non-secular part of the Hamiltonian
DXðI x � SxÞ sin b in Eq. (2) which was neglected in deriv-
ing Eq. (11). The dependence of the singlet relaxation rate
on both the shift difference DX and the offset Dx is shown
in Fig. 2. The singlet population PS was calculated for pairs
of values of these parameters at a time t = 10 s and the cor-
responding relaxation rate RS = 1/TS was calculated
Fig. 2. Dependence of the singlet relaxation rate on the shift difference DX
and the offset Dx. The rest of the parameters are identical to those in
Fig. 1.
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Fig. 3. Dependence of the singlet relaxation rate on the shift difference DX
at offsets Dx = 0 (zero) Hz (open circles), 150 Hz (dashed curve), and
300 Hz (solid curve).
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Fig. 4. Dependence of the singlet relaxation rate on the offset Dx at shift
differences DX = 0 Hz (open circles), 80 Hz (dashed curve), and 100 Hz
(solid curve).
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assuming a single exponential decay exp(�t/TS). Fig. 3
shows the dependence of the relaxation rate RS = 1/TS

on the shift difference DX for values of the offset Dx = 0,
150, and 300 Hz. The quadratic dependence on DX is
clearly seen with the width increasing with Dx. The curve
with Dx = 0 corresponds to a relaxation rate that arises,
again from the non-secular term which was neglected in
Eq. (2).

In the same spirit, Fig. 4 shows the dependence of
RS = 1/TS on the offset Dx for the values of the shift differ-
ence DX = 0, 80, and 100 Hz. The quadratic nature of the
dependence is seen. When DX = 0, a change of offset does
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Fig. 5. The dependence of the singlet relaxation rate on the parame
not affect the rate RS = 1/TS. This shows clearly that the
shift difference DX is the principal cause of relaxation of
the singlet population PS. In its absence, all other manipu-
lations of the Hamiltonian will leave PS undisturbed.

For given values of P and Q, Eq. (11) can predict the
relaxation rate of the singlet state provided the rate R2 is
known. When R2 is unknown, Eq. (11) can still be used
to describe the singlet relaxation rate up to a multiplica-
tive constant. The tolerance of the singlet relaxation rate
to the parameters P and Q can however be predicted
even without the knowledge of R2. Fig. 5 illustrates this
by comparing the normalized singlet relaxation rate pre-
dicted by Eq. (11) with simulations. The agreement is
very satisfactory. Normalization was performed in both
cases with respect to the fastest singlet relaxation rate.
In all simulations, the dependence of RS on P and Q

is oscillatory for large values of P and Q. This is antic-
ipated because the eigenvalues of the Liouvillian in Eq.
(9) are complex.
3. Conclusions

The relaxation rates of populations of singlet-states in
homonuclear spin pairs in the presence of continuous RF
fields can be expressed by simple approximations.
Although the present treatment does not include relaxation
mechanisms other than the dipolar interaction between the
actively involved spins, it can account for the dependence
of the relaxation rate on the parameters P = DX/(2pJ)
and Q = Dx/x1 in a qualitative manner. These consider-
ations are of prime importance for ongoing efforts to
increase the lifetime of the singlet-state populations in view
of studying slow dynamical processes.
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